Step of Proof: member_nth_tl
11,40
postcript
pdf
Inference at
*
2
1
I
of proof for Lemma
member
nth
tl
:
1.
T
: Type
2.
n
:
3. 0 <
n
4.
x
:
T
,
L
:(
T
List). (
x
nth_tl(
n
- 1;
L
))
(
x
L
)
5.
x
:
T
6.
T
List
(
x
nth_tl(
n
;[]))
(
x
[])
latex
by ((Subst' nth_tl(
n
;[]) = [] ( 0)
)
CollapseTHEN (Auto
))
latex
C
1
: .....equality..... NILNIL
C1:
nth_tl(
n
;[]) = []
C
.
Definitions
s
=
t
,
type
List
,
nth_tl(
n
;
as
)
,
[]
,
A
List
,
,
S
T
,
Top
,
x
:
A
.
B
(
x
)
,
Void
,
||
as
||
,
i
j
,
A
B
,
P
Q
,
P
Q
,
P
&
Q
,
x
:
A
B
(
x
)
,
[
car
/
cdr
]
,
SQType(
T
)
,
{
T
}
,
s
~
t
,
n
-
m
,
#$n
,
a
<
b
,
,
Type
,
P
Q
,
,
(
x
l
)
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
t
T
Lemmas
length
wf
nat
,
member
wf
,
top
wf
,
non
neg
length
,
cons
one
one
,
guard
wf
,
l
member
wf
origin